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SUMMARY

Computation of the acoustic disturbances generated by unsteady low-speed flow fields including vortices
and shear layers is considered. The equations governing the generation and propagation of acoustic
fluctuations are derived from a two-step acoustic/viscous splitting technique. An optimized high order
dispersion—relation—preserving scheme is used for the solution of the acoustic field. The acoustic field
generated by a corotating vortex pair is obtained using the above technique. The computed sound field is
compared with the existing analytic solution. Results are in good agreement with the analytic solution
except near the centre of the vortices where the acoustic pressure becomes singular. The governing
equations for acoustic fluctuations are then linearized and solved for the same model problem. The
difference between non-linear and linearized solutions falls below the numerical error of the simulation.
However, a considerable saving in CPU time usage is achieved in solving the linearized equations. The
results indicate that the linearized acoustic/viscous splitting technique for the simulation of acoustic
fluctuations generation and propagation by low Mach number flow fields seems to be very promising for
three-dimensional problems involving complex geometries. Copyright © 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The generation and propagation of acoustic waves by low-speed flows is of interest for
many applications, such as automobile and wind turbine noise. The compressible Navier—
Stokes equations describe sound generation and propagation by a general flow field. However,
direct numerical simulation of the full compressible equations is prohibitively expensive for
low Mach number flows. In fact, direct numerical simulations of the flow induced acous-
tic disturbances have been restricted to simple model problems to date [1-3]. In an attempt
to overcome the difficulties in predicting sound generation and propagation by low Mach
number flows, Hardin and Pope [4] proposed an acoustic/viscous splitting technique. In this
two-part calculation the viscous flow is first handled by calculating time-dependent incom-
pressible flow, and then the acoustic field is obtained from inviscid equations describing the
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differences from the incompressible flow. The same authors used this technique together with
a MacCormack predictor—corrector scheme to predict the sound generated by viscous flow
over a two-dimensional cavity [5]. Lee and Koo [6] followed this approach to simulate the
acoustic field generated by a co-rotating vortex pair. This model problem was also utilized by
Ekaterinaris [7] to verify a high order upwind-biased scheme proposed for solving the gov-
erning equations in terms of the primitive variables. He later proposed a high order control
volume scheme for solving the conservative form of the governing equations [8].

On the other hand, the shortcomings of the classical computational fluid dynamics differenc-
ing schemes in aeroacoustics simulations are well documented [9, 10]. To accurately capture
the sound wave generation and propagation in a complex flow field higher-order differencing
schemes are required. The dispersion—relation—preserving (DRP) schemes have shown their
effectiveness in accurately predicting sound wave propagation [10]. In the present study an
optimized high order (DRP) scheme together with the acoustic/viscous splitting technique of
Hardin and Pope is applied to predict sound generation and propagation by a pair of co-
rotating point vortices. This study helps to assess the DRP schemes capabilities in predicting
acoustic wave generation. The computed results are compared with existing analytic solutions.

The linearized form of the Hardin—Pope equations is also derived and used to solve this
problem. The accuracy of the linearized solution and the resulting savings in computational
efforts are discussed.

2. GOVERNING EQUATIONS

There are no truly incompressible fluids in the nature. However, the incompressibility assump-
tion results in a constant density flow field at the limit of low Mach number flows. Fast and
efficient numerical techniques have been developed to solve the incompressible Navier—Stokes
equations. Even though the pressure field can vary in time and space, but no mechanism for
sound generation is included in the above formulation. One can always consider the com-
pressible Navier—Stokes equations at the limit of low Mach numbers to account for pressure
fluctuations and sound generation. However, the present numerical techniques for the solution
of compressible flows become very inefficient as the Mach number approaches zero.

To overcome this problem Hardin and Pope [4] suggested a rather simple and practical
acoustic/viscous splitting technique that enables one to solve the time-dependent incompress-
ible Navier—Stokes equations for the velocity and pressure fields. Then, using the time averaged
pressure, they introduced a hydrodynamic density fluctuation correction term that is the source
of sound generation in the inviscid fluctuating acoustic equations. The variable density cor-
rection accounts for density variations safely neglected in computing incompressible pressure
field. These density fluctuations, which take place in the ‘incompressible’ flow, can be shown
to be quite large compared to acoustic density fluctuations [4]. Details of this technique are
explained below.

The Hardin—Pope splitting method introduces the following flow variables decomposition
u=U+u, v=V+V, p=P+ p', and p=po+ p1 + p'. Here, capital letters indicate incom-
pressible viscous flow variables and primed variables indicate their inviscid acoustic fluctuating
components. The ambient hydrostatic density is denoted by po and the hydrodynamic density
fluctuation correction p; = p;(x,¢) is defined as

p1=(P — P)/cj ()
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where ¢y = (7po/po)"/? is the speed of sound in the far-field ambient fluid and the time aver-
aged pressure for stationary flow fields is defined as
_ 1 /T
P= lim — / Pdt
T—oo T 0
The incompressible flow field variables U, V', and P are known through the numerical solution
of the time-dependent incompressible Navier—Stokes equations or from an analytic solution.
The equations governing the acoustic field induced by low speed flows are obtained by
utilizing the above decomposition in the compressible mass and momentum equations and

then subtracting the incompressible Navier—Stokes equations from them, see Reference [4] for
complete details. The acoustic field equations are given in a compact form as

E+E+@:ﬁ 2)
where
' pu' + p'U
Gg=\|pd +pU |, f=| pUd +u*)+pU*+p |,
pv' +p'V p(Vu' + UV +u'v")+ p'UV
pv' + p'V
g=| p(Vu' + UV +u'v') + p'UV

oV + 0+ p' V2 + p

d/0t(p1) + 0/0x(p1U) + 0/0y(pm V')
h=— | 0/ot(pU) + 8/ox(pU?) + 8/oy(p UV')
0/ot(p1 V') 4 0/0x(p1 UV) + 0/0y(p V)

In these equations, the acoustic variables are the acoustic density p’ normalized by the free
stream density po, the acoustic velocities #’ and v’ normalized by the far-field speed of sound
co, and the acoustic pressure p’ normalized by pocj. The fluctuating energy equation can be
used to obtain a relation for the acoustic pressure in terms of density; however since the
acoustic field is considered to be isentropic, then the pressure and density are related through
an isentropic relation, p/p.r =(p/prer)’, and the use of the fluctuating energy equation is
redundant. The non-dimensional form of this relation determines the acoustic pressure as

p'=(p'/y)—P (3)

These equations can be rewritten in a primitive variable form as follows:

dq oq aq
E+Aa+B@_S (4)

where 4 and B are the coefficient matrices, S is the source term matrix and ¢ is the primitive
variable vector of the acoustic fluctuations g = (p’,u’,v")'. The coefficient and the source term
matrices for a Cartesian co-ordinate system are given in Appendix A.
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3. LINEARIZED ACOUSTIC FIELD EQUATIONS

The acoustic field equations are non-linear and this enables them to capture such non-linear
phenomena as non-linear wave interactions and wave steepening. However this non-linearity
makes their numerical solution very time consuming, especially for complex three-dimensional
geometries. If a reasonable linearization of the equations proves feasible, simpler numerical
schemes with less stringent computational requirements can be designed for their solution.
Furthermore, extension of these schemes to three-dimensional problems involving complex
geometries can be realized on small workstations and leading edge personal computers. The
idea of a linearization is strongly supported by the fact that non-linearity effects are very
mild in the case of the generation and propagation of the acoustic waves by low Mach
number flows. The non-linear phenomena such as wave steepening are absent or very weak if
the flow region is not confined and there are no vibrating walls. In many low Mach number
flows unsteady vortex dynamic and/or shear layers are the main source of noise. The acoustic
source in these flows is similar in nature to a quadrupole source and therefore it is reasonable
to linearize the acoustic field equations.

In the present study the spinning vortex pair with its quadrupole acoustic source is used
to evaluate non-linearity effects in an unconfined region. The results of this study can be
extended to low Mach number external flows containing vortices and shear layers in absence
of vibrating walls.

It is well known that acoustic fluctuations are much smaller than their incompressible flow
field counterparts:

y<W
, (5)
P < po+pr

Also pressure changes due to minor density changes can be neglected in evaluating the speed
of sound and a uniform speed of sound can be considered throughout the computational
domain. Therefore, the following approximate values may be used to linearize acoustic field
equations:

vV
P = po—+ pi (6)

C=C

The linearized primitive variable form of the acoustic field equations, given by Equation (4),
may be rewritten as

op’ , ; op
—at—i-V-Vp + pV v =— —a[—kv-Vpl
ov’ , Vpl LoV ,
E+V~VU+ Py ——|:p o +(pV+v)-VV (7)
op'

W+V-Vp’+pocév-v’zo
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The numerical solutions of the linearized and non-linear acoustic field equations are dis-
cussed in the following section.

4. NUMERICAL CONSIDERATIONS

The acoustic field equations, proposed by Hardin and Pope, have been solved numerically
using classical CFD schemes in References [5—8]. In the present study optimized high order
DRP schemes are utilized.

Time marching is carried out by an explicit fourth-order accurate DRP scheme [9].
In comparison with the usual fourth-order Runge—Kutta schemes the fourth-order DRP scheme
requires more space to store residual terms at four different time steps. However, one-
dimensional case studies indicate that the usual fourth-order Runge—Kutta schemes require
more computing time due to computation of four different residual terms at every time
step [11].

Low order spatial differencing adds too much numerical error to the difference equations and
cannot be used for aeroacoustic predictions with a reasonable number of points per wavelength
of the shortest wave desired to be resolved. High bandwidth schemes are required for an
accurate solution of the aeroacoustic problems [10]. The bandwidth of a discrete operator
refers to the range of wave numbers resolved by the operator. One strategy to create operators
that are useful over a larger bandwidth is to reduce the order property below the maximum
order possible for a given stencil. The reduced order provides additional degrees of freedom
that can be used to optimize the operator. The stencil and, thus, the computational effort
remains identical to the original operator.

Suppose that an M + N + 1 point finite difference stencil is used to approximate the first
derivative 0f/0x at the point x of a grid with spacing Ax, i.e.

0 N
Ty X aft+jan ®)

j=—M

The effective numerical wave number of the finite difference scheme can be calculated by
the application of the Fourier transformation on both sides of Equation (8), as

=L 5 gei 9)
- ij J

=—M

In a DRP scheme, coeflicients a; are determined so that Equation (9) is accurate to the
order of Ax+N=2) through Taylor series expansion, and then the remaining unknowns are
chosen in a way that & is a close approximation of o over a wide band of wave numbers.
The numerical values of a; are tabulated in Reference [10].

In this study, fourth-order accurate optimized DRP schemes are used for space dicretization
of the acoustic field equations. Spatial differencing can be achieved by upwind or central
differencing schemes. Upwinding is based on the eigenvalue sign of the coefficient matrices.
The coefficient matrices 4 and B are diagonalized as follows:

AF =X AEX!, BT =XpAlXy! (10)
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where As and Ap are diagonal matrices containing the eigenvalues of 4 and B, X, and Xp
are the left eigenvector, and XA_1 and X ! are the right eigenvector matrices of 4 and B,
respectively. The residual term of the time marching

0
aif:R:S_(Aququy) (11)
is computed as
R=S-[(4"q; +47¢))+(B'q, +B q;)] (12)

where g™ and ¢~ are calculated using forward and backward upwind difference operators,
respectively.

Application of high order central differencing schemes to linearized equations can reduce
the computational effort by eliminating the requirement of computing the eigenvalues and
corresponding matrices. Equation (11) can be used directly to evaluate the residual terms.
The disadvantage of the central difference schemes is their inherent dependency in time and
space discritization. Selective artificial damping terms must be added to obtain a stable scheme.
An appropriate damping term is given by [10]

v 3 ,
__a d: —ijaAx; 13
Ax[zj;} je ( )

where [v,/Ax?] is the damping coefficient and Ax; is the grid spacing in ith direction.

Upwind and central differencing schemes are applied to the solution of the non-linear acous-
tic field equations, however, due to the simplicity of the linearized acoustic field equations
only the central differencing scheme is used for their solution. Results are discussed after a
brief review of the boundary conditions.

5. BOUNDARY CONDITIONS

A computational domain is inevitably finite in size. Therefore, appropriate boundary con-
ditions are required at the domain’s computational boundaries. These boundary conditions
allow the acoustic and flow disturbances to leave the computational domain with minimal
reflection. Acoustic radiation boundary conditions of Tam and Webb [9] are applied at the
far-field boundaries and the following set of differential equations are used to find the acoustic
fluctuations at boundaries:

1 0 0 1

where g, = (p'+ p1,u/, V)T, V(r,0)=U cos 0+ V sin 0 and (r,0) are polar co-ordinates centred
near the middle of the computation domain. Equation (14) is solved with an explicit scheme.
The time derivative is discretized using a first-order time accurate operator.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1059-1072
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6. RESULTS AND DISCUSSION

In order to assess the effect of the non-linear terms in the acoustic field equations and to
evaluate the performance of the proposed high order schemes, the sound field generated by
a co-rotating vortex pair is investigated. This model problem is chosen because there exist
analytical solutions for the flow and the acoustic field generated by a pair of point vortices
[12]. The existence of an exact flow field solution facilitates the evaluation of the numerical
schemes utilized for the solution of the acoustic field equations without suffering any possible
uncertainties imposed by numerical solution of the incompressible flow field. Others have used
this same problem to assess the accuracy of the numerical schemes proposed for solving the
governing equations in both original and primitive variable forms [6—8].

An acoustic field is generated by the inherent unsteadiness of the incompressible flow field
of a spinning vortex pair. The two-point vortices, separated by a distance 27, rotate around
each other along a circular path of radius 7, with a circulation intensity of I', a period of
T =8n*13/T, a rotating speed of w=T"/47nr?, and a rotating Mach number of M, =T'/4nryc,,
see Figure 1.

Miiller and Obermeier [12] used the method of matched asymptotic expansions for theoret-
ical analysis of the spinning vortices. In their analysis, the incompressible flow is considered
as the inner solution and the perturbed compressible flow field as the outer solution. These so-
lutions are matched in an intermediate region in such a way as to give an asymptotically valid
solution. Following this analysis, the hydrodynamic velocity and pressure and the acoustic

(x.y)

y/rg
o

0
x/r

Figure 1. Schematic configuration of corotating vortices.
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Figure 2. 3-D view of analytic solution for acoustic pressure.

pressure fluctuations are obtained as

. r =z
U_IV_EZ—Z—Z)Z
T'w b 1 RN,
P:P0+P075R (zz——bz> _EPO(U + V) (15)
p= 'OO—F4[J2(kr) cos(2(wt — 0)) — Ya(kr) sin(2(wt — 0))]
64n3ric3

where z=x +iy=re", b=rel’, M denotes the real part operator, k =2w/cq, and J>(z) and
Y>(z) are the second-order Bessel functions of the first and second kind, respectively. Figure 2
shows a 3-D graphical view of the acoustic pressure fluctuations when I' =27/10 and M, =0.1.

At the mid-distance between the vortices, the acoustic pressure becomes singular and very
close to the vortex centres the hydrodynamic velocity and pressure have large gradients. To
avoid numerical singularity at the centre of the vortices a vortex core model is required [6].
The Scully [13] vortex model as described below is used in this study. In this model the

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1059-1072
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Computation Analytic

Figure 3. Comparison of the analytic and computed acoustic pressure fields for I'=27/10 and M; =0.1.

tangential velocity component is approximated as

I'r
R e

where Jj is the tangential velocity, r is the radial distance from the vortex centre, and r. is
the core radius.

A square computational domain centred at the origin of the co-ordinate system with sides
equal to 3007, and uniform square grids is considered. Zero initial values are used for all
acoustic fluctuations. The computations are continued until temporal periodicity is obtained.

Based on the exact solution given by Equation (15) the distance between the vortex pair, ry,
and the circulation intensity, I', for a given value of speed of sound are the only parameters
determining the frequency, amplitude and spatial attenuation of the solution. In another word
the circulation intensity and the rotating Mach number determine the grid and time step
resolutions for an accurate and stable solution. However, the overall dynamics of the problem
is not affected by changing any of these parameters. Therefore, solutions are obtained and
presented only for I'=27/10 and M, =0.1 to avoid an extensive computational effort.

The non-linear acoustic field equations are solved by the upwind-biased scheme and the
results are compared with the exact solution. Figure 3 shows a qualitative agreement between
numerical and analytical acoustic pressure contours.

Figure 4 shows a more quantitative comparison between numerical and analytical solutions.
The acoustic pressure distribution along horizontal axis is extracted and depicted in this figure.
Although relatively coarse grid with Ax/ry =4 and moderate time step with Az=0.01 are used

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1059-1072
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Figure 4. Comparison of the analytical and computed results along x-axis for I'=27/10 and M; =0.1
with non-linear acoustic field equations.

in this simulation, dissipation and dispersion errors are bounded to reasonable amounts except
near the centre of the vortices where acoustic pressure becomes singular. This reveals the
ability of the acoustic/viscous splitting technique combined with the high order DRP scheme
in predicting the sound generation and propagation by quadruple sources.

The linearized acoustic field equations can also be solved using a high order central DRP
scheme. To achieve a stable solution with the central difference schemes an appropriate damp-
ing factor causing the least possible artificial damping is required. An appropriate damping
factor is obtained by simulation of the linearized equations and comparison of the results with
the exact analytical solution. To be consistent the same damping factor is used for non-linear
as well as linearized simulations. To this end, a high order central DRP scheme with differ-
ent damping factors ranging from 0.125 to 0.5 is used to solve the linearized acoustic field
equations. Figure 5 shows the extracted values of the computed results along the horizontal
axis and compares them with the analytical results. Based on these results a damping factor
of 0.25 is chosen for the rest of the computations.

To investigate effects of linearizing the acoustic field equations, non-linear simulation re-
sults are compared with linearized approximations in Figure 6. Both upwind and central DRP
schemes for non-linear simulations and the central DRP scheme for linear simulations are
used in this study. It shows that non-linear and linearized results are nearly indistinguishable
and their difference is even less than the difference between non-linear results and analytical
solution. The main advantage of the linearization proposed in this study lies in a considerable
simplification of the computational procedure and consequently results in a valuable time sav-
ing. Table I compares total CPU time needed for 100 000 iterations of the linearized and non-
linear simulations. All of the computations were carried out on a 633 MHz Intel Pentium III
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Figure 5. Comparison of the analytical and computed results along x-axis for I'=27/10 and M; =0.1
with different damping factors using linearized acoustic field equations.
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analytical and computed results along x-axis for I'=27/10 and M; =0.1

with linearized and non-linear equations.

with 256 MB of RAM. It is shown that non-linear calculations take about 160% more time

than the linearized calculations for the same number of iterations.

A grid resolution study is also carried out. In Figure 7 extracted values of the analytical
and linearized solutions along the horizontal axis obtained with two different grid spacings are
compared. Central DRP schemes with damping terms were used in both simulations. Good
agreement is observed except near the centre of the vortices where the acoustic pressure
becomes singular. It is shown that using a coarse grid spacing of Ax/ry =4, with about 11

Copyright © 2003 John Wiley & Sons, Ltd.
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Table I. CPU time comparsion of non-linear and linearized schemes (100000 iterations).

Case Solver Ax/ro Aylr At Damping factor CPU time (s)
1 Non-linear 4 4 0.01 0.25 13078
2 Linearized 4 4 0.01 0.25 4988
3 Non-linear 8 8 0.01 0.25 3272
4 Linearized 8 8 0.01 0.25 1248
5E-05 ‘
E \ Analytical
4E-05 | —— Central A x=3, A t=0.01, d=0.250
[ \ —v—— Central A x=4, At=0.01, d=0.250
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o

Figure 7. Comparison of the analytical and computed results along x-axis for I'=27/10 and M; =0.1
with different mesh spacings using linearized equations.

points per wavelength (PPW), provides as good a result as those obtained for the case of
Ax/ro =3, with about 15PPW, except near the centre of the vortices. Hence grid independency
is achieved with Ax/ry=4. It is noticeable that Lee and Koo [6] have reported using a
minimum of 25 PPW with a MacCormack predictor—corrector scheme to obtain a comparable
level of accuracy. Therefore, the DRP scheme can provide more than 50% savings in the
spatial resolution compared with lower order schemes.

The effect of time step on the solution of the linearized equations is investigated last. The
results obtained by two different time steps are compared with analytical solution in Figure 8.
Both solutions are extracted at the same time using Ax/ry =3. The solution computed with
the larger time step shows a notable deviation from the analytical solution, but the solution
computed by smaller time step picks up the analytical solution a wavelength away from the
source. Using time steps larger than 0.075, which appears to be the stability limit of the time
integration, gives rise to unstable solutions. The accuracy of the solution is not practically
increased with decreasing time step below 0.01 as the result obtained using this time step
nearly falls on the analytical solution at the far field.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1059-1072
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Figure 8. Comparison of the analytical and computed results along x-axis for I'=2x/10 and M;=0.1
with different time steps using linearized equations.

7. CONCLUSION

An acoustic/viscous splitting technique has been applied to the incompressible Navier—Stokes
equations to obtain an acoustic field equation governing the generation and propagation of
sound in low Mach number flow fields. Next an optimized high order DRP scheme is utilized
to solve the acoustic field equations for the solution of the sound generated by a spinning
vortex pair. The results show that the application of this method provides a good solution even
on relatively coarse grids. Finally, the acoustic field equations are linearized and then solved
by high order DRP schemes. It is observed that the error introduced into simulations by this
approximation is even less than the numerical error in simulating non-linear equations. The
prime advantage of this linearization is a substantial simplification of the solution procedure
and consequently notable timesavings. It is observed that non-linear calculations take about
160% more time than the linearized calculations for the same number of iterations. This
is a promising timesaving approach for the simulation of three-dimensional acoustic fields
generated by low Mach number flows.

APPENDIX A

The coeflicient and the source term matrices in the cartesian co-ordinates are given by

u p 0 v 0 p
A=|p u O, B=| 0 v 0],
0 0 u Alp 0 v
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ap dpr dp

|5

- N O0U ,\oU
pﬁ—f—(pU—i—u)E—l—(pV—kv)@

_ovo NI 2 N4
_pﬁ—k(pU—i—u)g—k(pV—kv)E_

where p=(p1 + p")/p.
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. Ebrahimi M. Computational aeroacoustics analysis and its application to cabin noise prediction. Ph.D.
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